

High Build Rate Logging While Drilling System (HbuildLWD)

Rotary Steerable Unit-High Build Rate (RSU-B) Wireless Measurement While Drilling-B (MWD-B) Electromagnetic Propagation Resistivity-B (EPR-B) Bi-directional Communication Power Module-B (BCP-B) Acoustic While Drilling (AWD) Battery Management Unit (BAT) Pressure Unit While Drilling (PWD) Pressure & Caliper Measurement While Drilling (PCD) Dynamics While Drilling (DWD)

Caliper Corrected Neutron Porosity (CCN) Rotary Azimuthal Density (RAD) Azimuthal Resistivity While Drilling (ARD) Ultrasonic Imaging While Drilling (UID) **Nuclear Magnetic Resonance** Imaging While Drilling (MRI) Formation Tester While Drilling (FTD)

¥ Stop Sub 1 ft.-7.7 in.

(0.5 m)

BCP-B

10 ft.-5.98 in. (3.2 m)

PCD/PWD

6 ft.-2.8 in. (1.9 m)

MWD-B 16 ft.-4.06 in. (4.98 m)

Applications

- Geosteering
- Automatically steering while drilling
- Well trajectory monitoring
- Provides Resistivity
- Provides Borehole Pressure and Caliper

Benefits

- Continuous steering while rotating
- Minimized torque & drag
- Improved hole cleaning
- Higher ROP
- Reduced differential sticking
- Bit selection for performance
- Improved hole quality
- Time saving

Features

- Build rate is 15°/100 ft. (15°/30 m).
- Provides Azimuthal Gamma Ray
- Provides Near Bit Inclination.

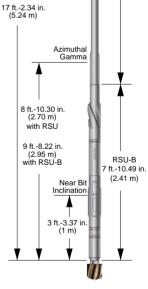
Introduction

The high build rate (15°/100 ft.) geosteering system makes sure drill directional or horizontal wells by only one trip. Near bit inclination, azimuthal gamma ray, resistivity, caliper, pressure, vibration, etc are acquired at the same time.

Components

Stop Sub

Bi-directional Communication Power Module-B (BCP-B) Battery Management Unit (BAT)(Optional) Pressure & Caliper Measurement While Drilling (PCD/PWD) Electromagnetic Propagation Resistivity-B (EPR-B)(Optional) Wireless Measurement While Drilling-B (MWD-B) High Build Rate Rotary Steerable Unit (RSU-B)


Note: MWD-B includes Azimuthal Gamma Ray.

Specifications

Tool O.D. (Nominal)	6.75 in.
Hole Size	8-1/2 in. to 9-7/8 in. (216 to 251 mm)
Length (Nominal)	42 ft6.63 in. (12.97 m)
Weight	4,079 lbs. (1,850 kg)
Connections	Up:4 1/2 in. IF Box
Connections	Down:4 1/2 in. Reg Box
Doglog Soverity	Max. Rotating 13°/100 ft. (13°/30 m)
Dogleg Severity	Max. Sliding 20°/100 ft. (20°/30 m)
Mud Flow Range	200-900 GPM

Operating Specifications:

opolating opoolitoationo	•	
Max. Temperature	350°F (175°C)	
Max. Pressure	20,000 psi (137.9 MPa)	
Sand Content	Max. volume recommended<1%	
Lost Circulation Material	Fine to medium nut plug	
Pulsation Dampener	Recommended set to 1/3 stand pipe	
Fuisation Dampener	pressure	
Data Acquisition	Mud pulse telemetry to surface and	
Data Acquisition	downhole memory	
Telemetry Type	Positive pulse	
Mud Pumps	Either duplex or triplex	
	± 80% max. deviation from the	
Downhole RPM	mean Operating rpm (e.g., 100 rpm:	
	Operation Range=20-180 rpm)	
	Pressure drop dependent upon mud	
Pulser Pressure Drop	weight, flow rate, MWD tool valve gap,	
	and data transmission rate.	
DP at Bit	No restrictions	
Mud Filter (Uphole)	Most sizes supplied	
Full Survey Transmission	55 seconds from Pumps-On	

MWD Survey

- Geosteering
- Automatically steering while drilling
- Well trajectory monitoring
- Provides Resistivity
- Provides Borehole Pressure and Caliper

Benefits

- Continuous steering while rotating
- Minimized torque & drag
- Improved hole cleaning
- Higher ROP
- Reduced differential sticking
- Bit selection for performance
- Improved hole quality
- Time saving

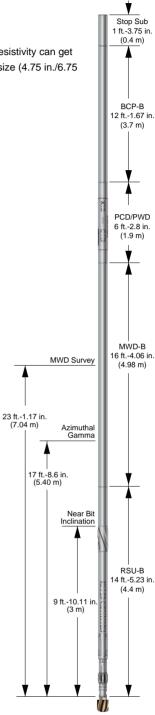
Features

- Build rate is 10°/100 ft (10°/30 m).
- Provides Azimuthal Gamma Ray
- Provides Near Bit Inclination.

Introduction

Geosteering with near bit inclination, azimuthal gamma ray and resistivity can get information for reservoir navigation. Adopt insert mode, different size (4.75 in./6.75 in./9.5in.) instrument can share insert probe, reduce the cost.

Components


Stop Sub

Bi-directional Communication Power Module-B (BCP-B) Battery Management Unit (BAT)(Optional) Pressure & Caliper Measurement While Drilling (PCD/PWD) Electromagnetic Propagation Resistivity-B (EPR-B)(Optional) Wireless Measurement While Drilling-B (MWD-B) High Build Rate Rotary Steerable Unit (RSU-B)

Note: MWD-B includes Azimuthal Gamma Ray

Specifications

Tool O.D. (Nominal)	4.75 in.
Hole Size	5-7/8 in. to 6-3/4 in. (150 to 172 mm)
Max. Temperature	350°F (175°C)
Max. Pressure	20,000 psi (137.9 MPa)
Length (Nominal)	50 ft4.72 in. (15.36 m)
Weight	3,617 lbs. (1,640 kg)
	Up:3 1/2 in. IF Box
Connections	Down:3 1/2 in. Reg Box
	Max Rotating 10°/100 ft. (10°/30 m)
Dogleg Severity	Max Sliding 30°/100 ft. (30°/30 m)
Mud Flow Range	125-350 GPM

- Geosteering
- Automatically steering while drilling
- Well trajectory monitoring
- Provides Resistivity
- Provides Borehole Pressure and Caliper

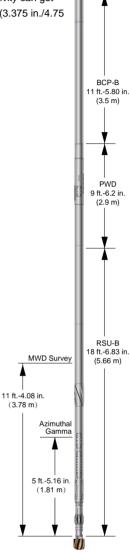
Benefits

- Continuous steering while rotating
- Minimized torque & drag
- Improved hole cleaning
- Higher ROP
- Reduced differential sticking
- Bit selection for performance
- Improved hole quality
- Time saving

Features

- Build rate is 10°/100 ft (10°/30 m).
- Provides Azimuthal Gamma Ray
- Provides Near Bit Inclination.

Introduction


Geosteering with near bit inclination, azimuthal gamma ray and resistivity can get information for reservoir navigation. Adopt insert mode, different size (3.375 in./4.75 in./6.75 in./9.5in.) instrument can share insert probe, reduce the cost.

Components

Bi-directional Communication Power Module-B (BCP-B) Battery Management Unit (BAT)(Optional) Pressure Unit While Drilling (PWD) Electromagnetic Propagation Resistivity-3 (EPR-3)(Optional) High Build Rate Rotary Steerable Unit (RSU-B)

Note: RSU-B includes Azimuthal Gamma Ray

Tool O.D. (Nominal)	3.375 in.
Hole Size	4-1/2 in. to 5-1/2 in. (114 to 140 mm)
Max. Temperature	350°F (175°C)
Max. Pressure	20,000 psi (137.9 MPa)
Length (Nominal)	39 ft6.8 in. (12.06 m)
Weight	1,985 lbs. (900 kg)
Connections	Up:2 3/8 in. IF Box
Connections	Down:2 3/8 in. Reg Box
Dogleg Severity	Max Rotating 30°/100 ft. (30°/30 m)
Degleg Coverity	Max Sliding 45°/100 ft. (45°/30 m)
Mud Flow Range	80-160 GPM

W High Build Rate Logging While Drilling Geo-Vista System (HbuildLWD) 9.5 in.

Applications

- Geosteering
- Automatically steering while drilling
- Well trajectory monitoring
- Provides Resistivity
- Provides Borehole Pressure and Caliper

Benefits

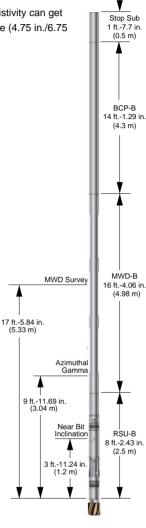
- Continuous steering while rotating
- Minimized torque & drag
- Improved hole cleaning
- Higher ROP
- Reduced differential sticking
- Bit selection for performance
- Improved hole quality
- Time saving

Features

- Build rate is 6.5°/100 ft (6.5°/30 m).
- Provides Azimuthal Gamma Ray
- Provides Near Bit Inclination.

Introduction

Geosteering with near bit inclination, azimuthal gamma ray and resistivity can get information for reservoir navigation. Adopt insert mode, different size (4.75 in./6.75 in./9.5in.) instrument can share insert probe, reduce the cost.


Components

Stop SubBi-directional Communication Power Module-B (BCP-B) Battery Management Unit (BAT)(Optional) Pressure Unit While Drilling (PWD)(Optional) Wireless Measurement While Drilling-B (MWD-B) Electromagnetic Propagation Resistivity-B (EPR-B)(Optional) High Build Rate Rotary Steerable Unit (RSU-B)

Note: MWD-B includes Azimuthal Gamma Ray

Specifications

Tool O.D. (Nominal)	8.25 in. / 9.5 in. tools with 9.5 in. RSU.
Hole Size	12 in. to 17-1/2 in. (305 mm to 445 mm)
Max. Temperature	350°F (175°C)
Max. Pressure	20,000 psi (137.9 MPa)
Length (Nominal)	40 ft3.46 in. (12.28 m)
Weight	14,330 lbs. (6500 kg)
Connections	Up: 7-5/8 in. Reg Box
Connections	Down: 7-5/8 in. Reg Box
Dogleg Severity	Max Rotating 6.5°/100 ft. (6.5°/30 m)
Dogiog Deventy	Max Sliding 13°/100 ft. (13°/30 m)
Mud Flow Range	300-1600 GPM

- Precise reservoir navigation
- Exact wellbore placement
- Early detection of bed boundaries
- Geo-confirmation of sedimentary structures
- Offers a smooth wellpath and excellent hole quality for faster completions and enhanced production.
- Identifies hole cleaning problems and fluid influx into the wellbore.
- Optimizes drilling performance and reliability
- Increased Rate Of Penetration (ROP)

Benefits

- Continuous steering while rotating
- Minimized torque & drag
- Improved hole cleaning
- Higher ROP
- Reduced differential sticking
- Bit selection for performance
- Improved hole quality

Time saving

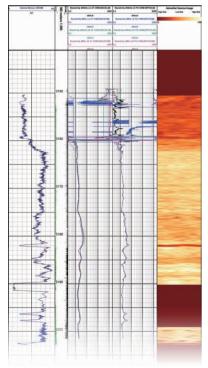
Introduction

RSU-B is based on closed-loop systems with new designed MWD technique. It allows steering to target by advanced directional control methods in most challenging wellbore trajectories. Adds any LWD tools or borehole optimization systems into integrated BHA follow application needs.

Used in conjunction with near bit azimuth gamma, the rotary steering unit can measure real-time near bit inclination and near bit azimuth data, achieving 3D trajectory steering control.

Specifications

Tool O.D.	3.375 in.	4.75 in.	6.75 in.	9.5 in.
Max. Operating		350	٥°F	
Temperature		(175	°C)	
Max. Working		2000) Psi	
Pressure		(137.9	MPa)	
Duild Data	30°/100 ft.	10°/100 ft.	15°/100 ft.	6.5°/100 ft.
Build Rate	(30°/30 m)	(10°/30 m)	(15°/30 m)	(6.5°/30 m)
Near Bit	0.400%			
Inclination	0-180°			
Accuracy	±0.1°			
Near Bit	0-360°			
Azimuth				
Accuracy	±1.0°			


- Steering drilling systems for re-entry and horizontal wells.
- Directional control
- Relief well drilling
- Precision geosteering in high angle wells.

Benefits

- Automated directional control
- Improved horizontal TVD control
- Reduced hole tortuousity
- Azimuthal kick off mode

Features

- Adopt insert mode, different size (3.375 in./4.75 in./6.75 in./8.25 in./9.5 in.) instrument can share circuit, reduce the cost.
- Azimuthal gamma ray confirmation formation boundaries and orientation, guides directional drilling operations better

Specifications

Measu	urement		Range		Resolution	Accuracy
	nation		0°-180°		0.1	± 0.15°
	muth		0°-360°		0.35	±1.0 @ INC>10°
	Magnetic		0°-360°		1.4	± 1.5°
Toolface	Gravty		0°-360°		1.4	± 1.5°
Temp	erature	50°F	- 300°F, 350°	F optional	1.1	± 3.0°C
Total Mag	gnetic Field	30,	,000-66,000 g	jamma	100	± 200
Tranamia	sion Rates			0.4 bit/s	~2 bits/s	
Transmis	SION Rales	Pulse W	idth Selectab	le: 3.0/2.0/1.	5/1.0/0.8/0.5/0).36/0.32/0.24 sec
Directiona	I Probe OD			1.75	5 in.	
Max. Tei	mperature			350°F ((175°C)	
Max. F	Pressure			20000 Psi (137.9 MPa)	
MTF/G	TF Switchin	g, Inclina	tion Degrees:	MTF/GTF S	Switching, Ope	erator Selectable
		(defa	ault set at 3°)	Inclination D	egrees	
			Vibration Me	easurement		
Sensor Ty		ibration		One Accele	rometer, Z dire	ection
Sensor ry		Vibration	Т	wo Accelero	meters, X-Y d	irection
Accel	eration Ran	ge			0-15 g	
Frequency Range 0-82 Hz						
Poaltir	ne Log Opti	005		Lateral an	d Axial vibrati	on;
Realtime Log Options		Transm	itted as seve	erity level (scal	ed to g-RMS)	
Post Run/Memory Log Average 8		Max. latera	l and axial vib	ration in g-RMS		
Options			and as	severity level		
		Rotat	ion & Stick-S	Slip Measure	ement	
Se	ensor Type			Two Axis	Magnetomet	er
Rot	ation Speed	ł		0-±	1000 RPM	
	Accuracy				±1%	
Realtir	ne Log Opti	ons	Downhole F	RPM, Stick-S	Slip transmitted	d as severity level
Post R	un/Memory	Log	Min., Max	Min., Max., & Average RPM, Stick-Slip & Backward		
	Options			Rotation severity		
		Azimut	hal Gamma	Ray Specifi	cations	
	Sense	or Type		Scintillation		
Measurement		API GR				
Real Time			Yes			
Recorded		Yes				
Range			0-500 API			
	Section	Quantity			8	
	Acc	uracy		±3% of full scale		
	Statistical F	Reneatah	ility	±3 API @ 100 API and		
		opoaido		ROP=60 ft./hr		
	Vertical I	Resolutio	n		6 in	

- Provides formation resistivities
- Provide realtime formation evaluation services.
- Provide wellbore placement
- Improve geosteering capabilities
- Operates at frequency of 2 MHz and 400 kHz Compensated antenna design with dual spacing transmitter pairs.

Features

- 8 quantitative resistivities with separate depths of investigation works in all mud types.
- Adopt insert mode, different size (4.75 in. /6.75 in.) instrument can share insert probe, reduce the cost.

GAMORAM	100 B B B (0.1	CREERPCHM	
APT	0.8.0	CHES APOLM	1
		Chin.m	
	- B - J	CHES APCSHA	
		CREB.RPOBLM	
		CREB RPCEBLM	
		Employee	
	4.4	GREB RPGEBING	
		CRES.RPCELM	1
		Chan on	
		CREAPCEIM	
3	1 3 1 1 1	NA CONTRACTOR	
3		12	
1			
< 1		25	
		12-1-1	
1			
3			
1		XXII	
2			
1			
3			
-		N	
1	8	2	
3	8		
3			
3		and the second sec	
5			
5			
		18	
8	8		
5			
N		37	
3		55	
2		11	
2			

Introduction

EPR-B transmits electromagnetic waves into the formation and measures the changes in the physical characteristics of the returned electromagnetic waves. The changes in the physical characteristics of the electromagnetic waves indicate the formation resistivity.

Specifications

7	Tool O.D. 4.75		. / 6.75 in./ 8.25 in.	
Max O	perating Temp	350	0°F (175°C)	
Max W	orking Pressure	25000 I	Psi (172.4 MPa)	
		Range	0.1-3000 ohm-m	
	Phase Difference	Accuracy	± 1% (0.1-50 ohm-m);	
		Accuracy	±0.5 mmho/m (> 50 ohm-m)	
2 MHz		Range	0.1-500 ohm-m	
	Attenuation		± 2% (0.1-25 ohm-m);	
	Accuracy	±1.0 mmho/m (> 25 ohm-m)		
		Vertical Resolution	8 in. (203 mm)	
	Dhara	Range	0.1-1000 ohm-m	
	Phase	A	± 1.0% (0.1-25 ohm-m);	
Difference		Accuracy	±1.0mmho/m (>25 ohm-m)	
400 kHz		Range	0.1-200 ohm-m	
	Attenuation	A	± 5.0% (0.1-10 ohm-m);	
	Attenuation	Accuracy	±5.0mmho/m (>10 ohm-m)	
		Vertical Resolution	12 in. (304 mm)	

- Transmission of downhole data to surface.
- Transmission of surface commands to downhole.

Features

Long working time without replacing battery under generator mode

Introduction

Bi-directional Communication Power Module-B (BCP-B) and downlink devices (SDD-II, NPG). The BCP-B (Bi-Directional Communication & Power Module-B) is capable of generating 300 Watt power output, providing 33 Vdc to the HbuildLWD system, providing circuit breaker protection for upper and lower mounted instruments, detecting downlink data by monitoring turbine speed, transmitting data to the surface via a pulser. It can be installed in any position of the instrument string,which provides a lot of conveniences for the logging.

Using the insert mode in the center of the drill collar. The electronic circuit and sensor can be applied to drill collars of different sizes (3.375 inch, 4.75 inch, 6.75 inch and 9.5 inch) only by configuring centralizers of different sizes. The SDD-II ends commands from the surface to downholev instrument by controlling the NPG (Negative Pulse Generator) which controls the mud flow.

Specifications

Weight (145 kg) (320 kg) (510 kg) (576 kg) (860 kg)						
Make-up Length Marcha <th< td=""><td>Tool O.D.</td><td>3.375 in.</td><td>4.75 in.</td><td>6.75 in.</td><td>8.25 in.</td><td>9.5 in.</td></th<>	Tool O.D.	3.375 in.	4.75 in.	6.75 in.	8.25 in.	9.5 in.
(3.5 m) (3.7 m) (3.2 m) (3.2 m) (4.3 m) Weight 321 lbs. 708 lbs. 1,128 lbs. 1,274 lbs. 1,900 lbs (145 kg) (320 kg) (510 kg) (576 kg) (860 kg) Flow Range 80-160 125-350 200-900 300-1600 300-1600 gpm gpm gpm gpm gpm gpm gpm gpm	Make up Longth	11.48 ft.	12.14 ft.	10.50 ft.	10.50 ft.	14.11 ft.
Weight Image <t< td=""><td>Make-up Lengun</td><td>(3.5 m)</td><td>(3.7 m)</td><td>(3.2 m)</td><td>(3.2 m)</td><td>(4.3 m)</td></t<>	Make-up Lengun	(3.5 m)	(3.7 m)	(3.2 m)	(3.2 m)	(4.3 m)
(145 kg) (320 kg) (510 kg) (576 kg) (860 kg) Flow Range 80-160 125-350 200-900 300-1600 300-1600 gpm gpm gpm gpm gpm gpm gpm gpm	Woight	321 lbs.	708 lbs.	1,128 lbs.	1,274 lbs.	1,900 lbs.
Flow Range gpm gpm gpm gpm gpm gpm gpm	vveignt	(145 kg)	(320 kg)	(510 kg)	(576 kg)	(860 kg)
gpm gpm gpm gpm gpm gpm	Elow Bongo	80-160	125-350	200-900	300-1600	300-1600
Max. Temperature 350°F (175°C)	Flow Ralige	gpm	gpm	gpm	gpm	gpm
	Max. Temperature	350°F (175°C)				
Max. Pressure 20,000 psi (137.9 MPa)	Max. Pressure	20,000 psi (137.9 MPa)				
Max. Turbine RPM 5000	Max. Turbine RPM	5000				
Output 33 Vdc±1	Output	33 Vdc±1				
Max. Power Output 300 Watts	Max. Power Output	300 Watts				

Safe Direction Drilling Panel-II (SDD-II)

Negative Pulse Generator (NPG)

- Flow-off directional surveys
- Directional surveys connected downhole motor on BHA top

Introduction

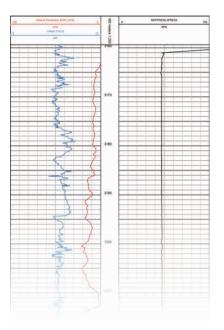
The Battery Management Unit provides directional sensor power during flow-off, acquire survey data, and store the data. Transmit the survey data to surface after flow-on.

Specifications

Maximum Temperature	350°F (175°C)	
Maximum Pressure	20,000 psi (137.9 MPa)	
	3.375 in. (85.7 mm)	
	4.75 in. (120.7 mm)	
Outside Diameter	6.75 in. (171.5 mm)	
	8.25 in. (209.5 mm)	
Length	4.93 ft. (1.5 m)	
Connections	GVT2 Box Up	
Connections	GVT2 PIN Down	

- Conductive to the control of well safety
- Optimizing the acquisition period
- Minimizing the total time required to accurately measure annular pressure

Introduction


PWD can accurately detect the annular pressure, the borehole pressure and temperature. Used to judge the underground complex situation, such as well leakage, blowout, well inflow and monitoring well, and conductive to the control of well safety.

Tool O.D.	4.75 in. / 120 mm	6.75 in. / 172 mm	8.25 in./210 mm	
Max. Pressure	20000 psi (137.9MPa)/25000 psi (172 MPa) (option)			
Max.				
Temperature	300°F (1	50°C)/350°F (175°C)	(option)	
Length	5 ft6.93 in. (1.7 m)	4 ft3.18 in. (1.3 m)	4 ft8 in. (1.424 m)	
Flow range	160-320 gpm 300-675 gpm 400-900 gpm			
Data Acquisition	Deal first & Devushala Decard			
Туре	Real-time & Downhole Record			
Data Transmit	Data Transmit Type Positive pulse			
Туре				
Pressure				
Measurement	0 - 25000 psi			
Range				
Accuracy	Accuracy ± 0.25% full scale			

Geo-Vista

Features

- Accurate downhole measurement of equivalent circulating density.
- Swab/surge pressure monitoring while tripping and reaming.
- Accurate downhole measurement of hydrostatic pressure and effective mud weight.
- Accurate measurement of caliper by ultrasonic.

Introduction

PCD can accurately detect the annular pressure, the caliper, the borehole pressure and temperature. It is used to judge the underground complex situation, such as well leakage, blowout, well inflow and monitoring well, and conductive to the control of well safety.

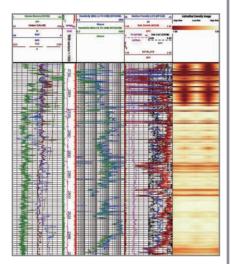
Tool O.D.	4.75 in.	6.75 in.	8.25 in.
Max Pressure	20,000 psi (137.9 MPa)		
Maximum Temperature	300°F (150°C)		
Make-up Length	6 ft2.8 in. (1.9 m)		
Operating Time	Real-time/ No limited		
Data Acquisition Type	Real-time & Downhole Record		
Pressure Measurement Range	0-25000 psi		
	5.30 in. to	7.30 in. to	8.80 in. to
Caliper Measurement Range	7.30 in.	9.30 in.	10.80 in.
Caliper measurement range	(135 mm to	(185 mm to	(224 mm to
	185 mm)	236 mm)	274 mm)
Caliper Accuracy	±0.2 in. (± 5 mm)		
Sensor Type	Ultrasonic detector		
Measurement	Pressure & Caliper		
Real Time	Yes		
Recorded	Yes		

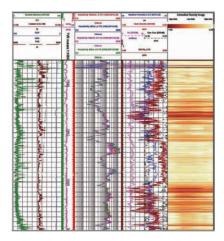
- ECD/Monitor Real-time ECD
- Improve hole cleaning
- Monitor status of liquid leaking to formation
- Monitor hole erosion
- Judge Bit working Condition

Introduction

This tool can measure weight on bit (WOB), BHA Torque, Hole Pressure and annular pressure, and transmit to surface via positive pulse. According the sensor data, drilling operator can modify the drilling parameter, mud equivalent circulation density, and drill safely and quickly.

Maximum Temperature	350°F (175°C)	
Maximum Pressure	20,000 psi (137.9 MPa)	
OD		6-3/4 in. (172 mm)
Connector	Up	GVT2 PIN
	Down	GVT2 BOX
Dogleg	16°/30 m @ slidding	
		9°/30 m @ rotation
Power	Alternator	
Wob Measure Range	± 300 KN	
Wob Measure Accuracy	± 5%	
Torque Measure Range	± 30 KNm	
Torque Measure Accuracy	± 5%	
Pressure Measure Range	0∼25000 psi	
Pressure Measure Accuracy	± 0.3% full range	

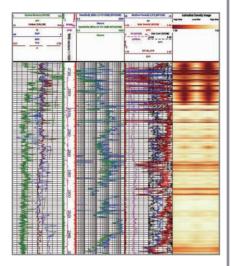




0

Applications

- Accurate, real-time quantification of porosity and gas identification for saturation calculations.
- Reservoir Navigation using high-resolution imaging and gas-oil/water identification in real-time.
- Wellbore stability analysis using azimuthal caliper and density imaging in real-time.
- Structural formation dip analysis and updating reservoir models from density imaging.


Introduction

CCN-RAD offers measurement of formation density, neutron porosity, borehole caliper, and formation imaging. That provides geosteering for maximum reservoir exposure. Neutron porosity and bulk density are critical for the quantification of hydrocarbons in the reservoir.

Specifications

Diameter	4.75 in. With 5.59 in. upset		
Max. Pressure	20000 psi (137.9 MPa)		
Max. Temperature	300°F (150°C)		
Weight	1100 lbs. (498 kg) (CCN-RAD 4)		
Max. Dogleg Severity		15°/100 ft. (15°/30 m) Rotating 30°/100 ft. (30°/30 m) Sliding	
CCN			
Service		Formation Porosity	
ТооІ Туре		Caliper Corrected Neutron	
Detectors		um-6 lodide Crystal with Photomultiplier tube for both Near and Far detectors	
Porosity Accuracy	0.5 p	u below 10 pu, 5% of reading for 10-50 pu	
Vertical Resolution		24 in. (61 cm)	
Statistical Repeatability		± 0.6 pu@20 pu @ 200 ft./hr.	
Max. Logging Speed		180 ft./hr (@2 points/ft.)	
Depth Of Investigation	10	in. estimated for 8.5 in. 10 pu borehole	
Radioactive Source	Ar	n 241-Be Strength: 5 Curies (185 GBq)	
Measure Point	4.	6 ft. (1.4 m) (From downhole tool end)	
Voltage		30 Vdc	
Current Draw		160-170 mA	
RAD			
Service	Forma	tion Bulk Density Service with Hole Caliper	
ТооІ Туре	Rotational Azimuthal Density		
Detectors	Nal Scintillation Crystal with photomultiplier tube for both Long and Short Spaced detectors		
Density Specifications			
Range	1.6-3.1 g/cc		
Accuracy	± 0.0	25 g/cc@200 ft./hr (60 m/hr) and 2.5 g/cc	
Statistical Repeatability		18 in. (45 cm) (full resolution)	
Downhole End Measure Po	pint	5.1 ft. (1.5 m)	
Photoelectric Factor Specif	ications		
Range	1-10 Barnes/electron (B/e)		
Accuracy	± 0.25 B/e from 2-5 B/e		
Statistical Repeatability	± 0.25 B/e@200 ft./hr (60 m/hr)		
Vertical Resolution	6 in. (150 mm) (full resolution)		
Downhole End to Pe Meas			
Acoustic Standoff Caliper S	Specificatio		
Range	0-2 in. (Out of housing)		
Accuracy	±0.075 in. (0 to 0.5 in.) ±0.125 in. (0.5 to 1.0 in.) ±0.25 in. (1.0 to 2.0 in.) Out of housing		
May Longing Crood	180 ft./hr (@2 points/ft.)		
Max. Logging Speed			
Radioactive Source		Cs137 Strength: 2 Curies (74 GBq)	
		Cs137 Strength: 2 Curies (74 GBq) 30 V	

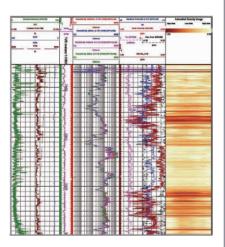
- Accurate, real-time quantification of porosity and gas identification for saturation calculations.
- Reservoir Navigation using high-resolution imaging and gas-oil/water identification in real-time.
- Wellbore stability analysis using azimuthal caliper and density imaging in real-time.
- Structural formation dip analysis and updating reservoir models from density imaging.

Introduction

CCN-RAD offers measurement of formation density, neutron porosity, borehole caliper, and formation imaging. That provides geosteering for maximum reservoir exposure. Neutron porosity and bulk density are critical for the quantification of hydrocarbons in the reservoir.

Specifications

Diameter	6.75 in. with	8.25 in. With
	7.50 in. upset	10.125 in. upset
Max. Pressure	20000 psi	(137.9 MPa)
Max. Temperature	300°F	(150°C)
Weight	893 lbs. (405 kg)	1325 lbs. (600 kg)
Service	Formatio	n Porosity
ТооІ Туре	Caliper Corr	ected Neutron
	9°/100 ft. (9°/30 m)	6.5°/100 ft. (6.5°/30 m)
Doglag Soverity	Rotating	Rotating
Dogleg Severity	16°/100 ft. (16°/30 m)	12°/100 ft. (12°/30 m)
	Sliding	Sliding
Detectors	Lithium-6 lodide Crystal with Photomultiplier	
Delectors	tube for both Near and Far detectors	
Porosity Accuracy	0.5 pu below 10 pu, 5% of reading for 10-50 pu	
Vertical Resolution	24 in. (61 cm)	
Statistical Repeatability	± 0.6 pu@20 pu @ 200 ft./hr.	
Max. Logging Speed	180 ft./hr (@2 points/ft.)	
Depth Of Investigation	10 in. estimated for 8.5 in. 10 pu borehole	
Radioactive Source	Am 241-Be Strength: 5 Curies (185 GBq)	
Measure Point	4.6 ft. (1.4 m) (From downhole tool end)	
Voltage	30 Vdc	
Current Draw	160-170 mA	



ി

Applications

- Accurate, real-time quantification of porosity and gas identification for saturation calculations.
- Reservoir Navigation using high-resolution imaging and gas-oil/water identification in real-time.
- Wellbore stability analysis using azimuthal caliper and density imaging in real-time.
- Structural formation dip analysis and updating reservoir models from density imaging.
- 8 or 16 sector azimuthal density, Pe and borehole caliper measurements.

Introduction

CCN-RAD offers measurement of formation density, neutron porosity, borehole caliper, and formation imaging. That provides geosteering for maximum reservoir exposure. Neutron porosity and bulk density are critical for the quantification of hydrocarbons in the reservoir.

Specifications

Dian	neter	6.75 in.	8.25 in.
Max. Pressure		20000 psi (137.9 MPa)	
Max. Temperature		300°F (150°C)	
We	ight	1092 lbs. (495 kg)	1945 lbs. (881 kg)
Ser	vice	Formation Bulk Density Se	ervice with Hole Caliper
Tool	Туре	Rotational Azim	uthal Density
Max. Dogleg	Rotating	9°/100 ft. (9°/30 m)	6.5°/100 ft. (6.5°/30 m)
Severity	Sliding	16°/100 ft. (16°/30 m)	12°/100 ft. (12°/30 m)
D /		Nal Scintillation Crystal with	photomultiplier tube for
Dete	ctors	both Long and Short	Spaced detectors
		Density Specifications	
Ra	nge	1.6-3.1	g/cc
Асси	uracy	± 0.015	g/cc
Statistical R	Repeatability	± 0.025 g/cc@200 ft./hr	(60 m/hr) and 2.5 g/cc
Vertical R	Resolution	18 in. (45 cm) (f	ull resolution)
Downho	ole End	E 4 () (4	5.)
Measu	re Point	5.1 ft. (1.5 m)	
	Photoe	electric Factor Specification	IS
Ra	nge	1-10 Barnes/electron (B/e)	
Асси	iracy	± 0.25 B/e fro	om 2-5 B/e
Statistical R	Repeatability	± 0.25 B/e@200	ft./hr (60 m/hr)
Vertical F	Resolution	6 in. (150 mm) (f	full resolution)
Downhole	End to Pe	EALL IA	5 m)
Measu	re Point	5.1 ft. (1	.5 111)
	Acoustic	Standoff Caliper Specificat	ions
Ra	nge	0-2 in. (Out c	of housing)
		±0.075 in. (0	to 0.5 in.)
۸	150.01/	±0.125 in. (0.5 to 1.0 in.)	
ACCU	iracy	±0. 25 in. (1.0 to 2.0 in.)	
		Out of housing	
Max. Logo	jing Speed	180 ft./hr (@2	2 points/ft)
Radioacti	ve Source	Cs137 Strength: 2	Curies (74 GBq)
Volt	age	30 V	
Curren	nt Draw	350 mA~390 mA	

Azimuthal Resistivity While Drilling (ARD) Geo-Vista

Applications

- For geosteering, the distance to the layer interface can be inferred to enhance the reliability and accuracy of geosteering.
- The azimuth resolution of 16 sectors close to the ground can be obtained. Its dynamic compensation can eliminate environmental interference.
- The 4 3/4" ARD and 6 3/4" ARD are compatible with HbuildLWD tools. This combination of drilling tools can accurately control the steering during drilling in complex formations.

Benefits

- Deeper detection radius, the approaching stratum can be warned in advance to make timely decisions.
- The 16-sector azimuth resolution can determine the azimuth angle close to the formation and avoid entering shale or other hard formations.
- Improve the rate of oil reservoir drilling.
- The oil-water interface can be clearly distinguished from the inclined top layer of shale.
- Suitable for all types of mud.

Features

- ARD eliminates environmental influences to a great extent, such as wellbore size, tool eccentricity, tool bending degree and temperature.
- The multiple coil system makes the tool more sensitive to detection near the ground.
- The rectangular coil receiver enhances the detection depth of ring waves.

Introduction

ARD determines the azimuth angle close to the formation interface in real-time, such as the azimuth angle of the shale lens, cap layer or oil-water interface. The detection radius from the borehole axis is up to 17 feet (5.2 m). ARD is used for water-based mud, synthetic-based mud or oil-based mud.

Specifications

4 3/4 in. (121 mm) / 6 3/4 in. (172 mm)
5 7/8 in6 3/4 in. / 8 3/8 in10 5/8 in.
6 1/8 in. (156 mm) / 8 1/2 in. (216 mm)
11.03 ft. (3.36 m)
672 lbs (305 kg) / 1274 lbs (578 kg)
4.755 in.x2.165 in. / 6.755 in.x2.165 in.
NC38 / NC50 Female thread
GT4 / GT6
estrictions
125-350 gpm / 200-900 gpm
534 klbs (2376kN) / 704 klbs (3132 kN)
7 kft-lbs (10 kNm) / 20 kft-lbs (27 kNm)
16 kft-lbs (22 kNm) / 61 kft-lbs (82 kNm)
300°F (150°C)
20000 psi (1378 bar)
5.46 ft. (1.66 m)
17 ft. (5.2 m)
±2%
24 in. (61 cm) (High resolution)
16

111

m

	Phase Difference	Range	0.1-3000 ohm-m
		Accuracy	± 1% (0.1-50 ohm-m)
			±0.5 mmho/m (> 50 ohm-m)
2 MHz		Range	0.1-500 ohm-m
	Attenuation	Accuracy	± 2% (0.1-25 ohm-m)
	Allenuation	Accuracy	±1.0 mmho/m (> 25 ohm-m)
		Vertical Resolution	8 in. (203 mm)
	Dhaaa	Range	0.1-1000 ohm-m
	Phase Difference	Accuracy	± 1.0% (0.1-25 ohm-m)
			±1.0 mmho/m (>25 ohm-m)
400 kHz Attenuation	Range	0.1-200 ohm-m	
	Attenuetien		± 5.0% (0.1-10 ohm-m)
	Alternuation	Accuracy	±5.0 mmho/m (>10 ohm-m)
	-	Vertical Resolution	12 in. (304 mm)

Applications

- Optimize mud-weight selection
- Predict pore pressure independent of temperature and salinity effect.
- Identify top-of-cement
- Understand rock mechanical properties
- Measure porosity sourceless
- Position bit-on-seismic using synthetics
- Identify gas influx or formation gas.
- Perform many other standard sonic applications.

Introduction

Acoustic While Drilling (AWD) provides real-time compressional and shear wave travel-time measurements in slow and fast formations. Shear and comressional slowness with computed semblance values are acquired using a state-of-the art acoustic source combined with multiple arrays of receivers. Advanced downhole processing and wavefrom stacking techniques ensure reliable and fully compensated measurements.

Specifications

Diame	ter	4.75 in.	6.75 in.
Tool O.D.		4.82 in. (122.43 mm)	6.9 in. (175.26 mm)
Hole Size		5.625 in. to 8 in.	8.5 in. to 10.625 in.
	ize	(143 to 203 mm)	(216 mm to 270 mm)
Max. Operating	Temperature	300°F	(150°C)
Max. Operating	g Pressure	20,000 psi (137.9 MPa)	
Lengt	h	30 ft. (9 m)	23.8 ft. (7.254 m)
Weigł	nt	1,760 lbm (798 kg)	2,500 lbm (1,134 kg)
		GT4 box up/	GT6 box up/
Thread	HbuildLWD	GT4 pin down	GT6 pin down
Connections	ComUMD	NC38 box up/	NC46 box up/
	ComLWD	NC38 pin down	NC46 pin down
Makeup T	orque	8845 ftlbf (11,984 N.m)	25,000 ftlbf (33,895 N.m)
Max.	Rotating	15°/100 ft. (15°/30 m)	8°/100 ft. (8°/30 m)
Dogleg Severity	Sliding	30°/100 ft. (30°/30 m)	16°/100 ft. (16°/30 m)
May Flaw Data		400 gal US/min.	800 gal US/min.
Max. Flow Rate		(1,514 L/min.)	(3,028 L/min.)
Max. Sand Content			3%
Max. LCM Size		0.63 in. (16 mm)	
Average I	nertia	62 in.	
Transmitters	Number	1	
Receivers N	lumber	4	
Measurement Type		Compression Wave & Shear Wave	
Accuracy, us/ft.		± 1	
(us/0.305 m)			
Measurement Range		All tools 40-230 us/ft. dependent on mud type	
Max. Shock		250 g for 100,000 cycles	
Measure Point From		14 ft. (4.267 m)	
Tool Bottom		1411.1	(7.207 III)

- Fracture characterization
- Borehole breakouts and geomechanics
- Borehole geometry evaluation
- Thin-bed identification
- Structural dip determination
- Lithology and porosity variations
- Secondary porosity identification
- Sedimentary features identification

Features

- Measures both Amplitude and Travel Time to obtain fully sampled images of the borehole surface.
- Enables client to evaluate borehole quality
- Enables a 256 sector circumferential resolution (1.4°) which is sufficient to fully sample the borehole wall in the typical ROP and RPM ranges experienced while drilling

Benefits

- High quality ultrasonic acoustic transducer
- 3D Borehole image visualization

High sampling rate

Introduction

Ultrasonic Imaging While Drilling (UID) provides high-resolution borehole images while drilling in OBM/WBM.

Borehole imaging has been used to calculate borehole caliper, stress, breakout orientation, stratigraphic and geologic structure imaging in conventional wells. Borehole wall images are commonly used for fracture characterization during well planning to optimize hydraulic stimulation and maximize the possible return from a reservoir.

The image service is only avalable in memory mode while drilling, caliper is in real-time.

Maximum Temperature	300°F (150°C)
Maximum Pressure	20.000 psi (137.9 MPa)
Tool Size	6-3/4 in. (172 mm)
Hole Size	8-3/8 to 10 in. (213 mm to 254 mm)
Tool Weight	825 lbs. (375 kg)
Tool Length	8.8 ft. (2.68 m)
Logging Speed	Up to 400 ft./hr
Mud Type	OBM/WBM
Maximum Mud Weight	16 ppg
Azimuthal Sectors	256
	•

Geo-Vista

Applications

- Continuous,real-time,lithology-independent porosity without chemical sources.
- Resistivity-independent pay identification.
- Continuous,real-time permeability evaluation.
- Thin-bed characterization.
- Carbonate facies characterization.
- Irreducible water saturation.
- Gas-bearing reservoir evaluation.
- Heavy oil and tar identification.
- Hole size distribution

Introduction

By providing lithology-independent porosity, pore-size distribution, continuous permeability and direct hydrocarbon detection, the MRI delivers a step change in real-time producibility assessment for complex reservoirs.

While drilling a well with a challenging trajectory to target a complex carbonate reservoir the MRI (The high-quality, real-time magnetic resonance) to evaluate rock and fluid properties and obtain accurate lithology independent porosity and continuous permeability to optimize placement of the wellbore, the advanced petrophysical evaluation improved testing and completion design and calculated reservoir producibility for focus on well.

Specifications

Max. Tool O.D.	6.9 in. (175 mm)	
(Single-sleeve Stabilizer)	(single-sleeve stabilizer)	
Max. Pressure	20,000 psi (137.9 MPa)	
Max. Temperature	:	300°F (150°C)
Make-up Length	32	2.38 ft. (9.87 m)
Weight	3385	.4 lbm. (1535.6 kg)
Borehole Size Range	8.25 to 10.	375 in. (20.96-26.36 cm)
Normal Collar O.D.	6-3/4 in. (1	71.5 mm) API tolerance
Thread Connections	GT6 bo	ox up/ GT6 box down
Vertical Resolution Static	1.5 in./min4 in./m	in. (3.81 cm/min10.16 cm/min.)
Vertical Resolution Dynamic	10 in.@50 ft./h (2	25.4 cm@15 m/h)-0.25 m/min.
	20 in.@100 ft./h	(50.8 cm@30 m/h)-0.5 m/min.
Measurement of Porosity		0-100 pu
Min. mud Resistivity		0.02 ohm.m
Shell Diameter	1	5 in. (381 mm)
Shell Thickness	C).24 in. (6 mm)
Max. Number of Echoes	2000	
Min. Echo,Spacing	0.6 ms	
T ₂ Distribution	0.5 to 5,000 ms	
Precision	<10 pu/PAP	
Depth of Investigation	1	4 in. (356 mm)
Static Field Gradient		58 gauss
Freq of Sensitive Volume		245 kHz
Operating Position		Centralized
Hole Deviation	Ver	tical to Horizontal
Power Supply	Turbine alternator	
Dealer	Sliding	16°/100 ft. (16°/30 m)
Dogleg	Rotating	8°/100 ft. (8°/30 m)
May Outer Check Laure	30 min. at shock level 5 (50-gn threshold or	
Max. System Shock Level	accumulatd 20	00,000 shocks above 50 gn)
Torque	23,500 ft. lbf (31,800 N.m)	
Max. PH		<9
1		

- Optimization of mud weight
- Selection of optimal case
- Estimation of reserves
- Identification of fluids and their contacts.
- Reservoir model refinement
- Well placement

Benefits

- Mitigates risk through reservoir pressure management.
- Improves prediction of reserves using fluid typing.
- Enhances drilling performance through optimal mud weight.
- Saves time and cost by eliminating need for tool orientation.

Features

- Provides formation pressure in drilling environment
- Provides direct pore pressure and mobility data for fluid typing and mud-weight optimization
- Used in any hole orientation—vertical or deviated
- Optimizes pretest volume and drawdown to formation characteristics
- Real-time measurements with quality control indicators

Introduction

Formation Tester While Drilling (FTD) service makes accurate measurements that provide direct pore pressure and mobility data for fluid typing, reservoir pressure management, and mud-weight control and optimization. It achieves time savings through a focus on operational efficiency and measurement versatility, accuracy, and quality.

Specifications

		4.75 in.	6.75 in.
		Tool Design	
Meas	surement Type	Probe pro	etest
Pres	sure Gauges	High-precision quartz and strain	
Pov	wer Supplies	Battery, MWD tu	rbine power
		Measurement Specifications	3
Prob	e Dimensions	1.75 in. (44.45 mm) OD	2.25 in. (57.15 mm) OD
1100	e Dimensions	0.44 in. (11.18 mm) ID	0.56 in. (14.22 mm) ID
	Volume	0 to 25 cm ³ , fully	v adjustable
Pretest	Drawdown Rate	0.1 to 2.0	cm³/s
	Delta Pressure	6,000 psi (41 MPa)	>6,000 psi (>41 MPa)
Se	tting Piston	1.38 in. (35.05 mm)	2.00 in. (50.00 mm)
Dia	meter Reach	more than tool OD	more than tool OD
Mon	nory Capacity	Up to 120 pretests	80 pretests of 5 min.
IVIEII	lory Capacity	depending on time downhole	duration
Pot	150 pretests		
Dali	tery Capacity	1 cm³⁄s at 3,200 psi (22 MPa) dr	awdown at 275 °F (125 °C)
		General Specifications	
		4.82 in. (122.43 mm)	8.25 in. (209.6 mm)
Тос	ol Max. O.D.	5.75 in. (146.05 mm)	9.25 in. (234.95 mm)
		5.5 in. (139.7 mm) optional	with optional collar
Т	ool Length	40.2 ft. (12.3 m)	31 ft. (9.45 m)
	Weight	2,000 lbm (907 kg)	2,866 lbm (1,300 kg)
Three	d Connections	GT4 box up/	GT6 box up/
Threa	la Connections	GT4 box down	GT6 box down
Operating Temperature 300 °F (150 °C)		0 °C)	
		Mechanical Specifications	
Max. Dogleg	Rotary Mode	15°/100 ft. (15°/30 m)	8°/100 ft. (8°/30 m)
Severity		30°/100 ft. (30°/30 m)	16°/100 ft. (16°/30 m)
Axia	al And Lateral Shocks	10g rms	
		Hydraulics	
Ma	ax. External	20.000 ~~: (4	29 MDo)
	Pressure	20,000 psi (1	so ivira)
_		0 to 400 galUS/min.	0 to 800 galUS/min.
F	low Range	(0 to 1,514 L/min.)	(3,028 L/min) (standard)
	Note:	Specifications are subject to cl	hange.

Marketing Manager Xujie Zhang Mobile: (+86) 13521254100 Email: zhangxj@renhesun.com

International Sales Manager Sharry Liu Mobile: (+86) 13911317865 Email: sharry@renhesun.com

Sales Manager Dr. Hong Mei Contact: +1 8323585168 Email: meihong@renhesun.com Address: 910 Chinquapin Place, Houston,Texas, USA 77094 Product Manager Hongai Zhang Mobile: (+86) 18911632096 Email: zhangha@renhesun.com

International Sales Director Chen Gang Mobile: (+86) 13817367599 Email: chengang@renhesun. com

Sales Manager Chen Hua Contact: +971 524515130 Email: chenhua@renhesun. com Address: View 18 Office No. 2102, Downtown Jabel Ali, Dubai, UAE